Chromium propionate increases insulin sensitivity in horses

Viewing 0 reply threads
  • Author
    Posts
    • #19689

      A great study on the effectiveness of chromium propionate and metabolic syndrome. It is helpful at some doses. However being a type 2 diabetic myself, a form of metabolic syndrome, I was taking this back a decade ago, the effects were equivocal, but more importantly there were many questions that should be answered before it’s supplementation. These questions remain unanswered and are as pertinent in the horse as humans. I have included a recent summary of the state of knowledge of chromium use in humans, where there is a lot more research, that goes over these questions.
      DrO

      J Anim Sci. 2020 Apr 1;98(4).
      Chromium propionate increases insulin sensitivity in horses following oral and intravenous carbohydrate administration.
      Spears JW1, Lloyd KE1, Siciliano P1, Pratt-Phillips S1, Goertzen EW1, McLeod SJ1, Moore J1, Krafka K2, Hyda J2, Rounds W2.
      Author information
      Abstract
      Forty-eight Quarter Horse geldings (3 to 8 yr of age) were used to determine the effects of dietary chromium (Cr), in the form of Cr propionate (Cr Prop) on insulin sensitivity. Horses were blocked by age, body condition score, and glucose response to concentrate feeding on day 0 and randomly assigned to treatments. Treatments consisted of 0, 2, 4, or 8 mg Cr/d from Cr Prop. Horses were fed daily a concentrate mix at a rate of 0.2 kg/100 kg body weight (BW) and grass hay at 1.75 to 2.0 kg/100 kg BW. All horses were fed the control diet for 7 d prior to the initiation of the study. After an overnight fast, blood samples from the jugular vein were obtained at 0, 2, and 4 h after concentrate feeding on days 0 and 28 for the determination of glucose, nonesterified fatty acids, and insulin. A glucose tolerance test (GTT) was conducted on day 42. Glucose was infused via jugular vein catheters, and blood samples were collected at various times relative to dosing for glucose and insulin determination. Plasma glucose on day 28 was affected (P < 0.05) by treatment, time, and treatment × time. Horses fed 4 mg Cr/d had lesser (P < 0.05) plasma glucose concentrations than those in the other treatments at 0 h. At 2 h post-feeding glucose concentrations were greater (P < 0.05) in horses fed 0 or 8 mg Cr/d than in those given 4 mg Cr. Horses fed 2 mg Cr/d had lesser (P < 0.05) plasma glucose at 4 h post feeding compared with those fed 0 or 8 mg Cr. Plasma glucose did not differ among horses receiving 2 or 4 mg Cr/d at 2 or 4 h. Serum insulin was affected (P < 0.05) by treatment, time, and treatment × time. Insulin concentrations were greater (P < 0.05) in horses fed 0 or 2 mg Cr/d than in those given 4 or 8 mg Cr at 0 h. At 4 h post-feeding insulin concentrations were greater (P < 0.05) in horses given 0 or 8 mg Cr than in those fed 2 or 4 mg Cr/d. Plasma glucose was affected (P < 0.05) by treatment and time, but not by treatment × time following the GTT. Mean plasma glucose (across sampling times) concentrations were greater (P < 0.05) in controls than in horses fed 2 or 4 mg Cr/d. Glucose concentrations following the GTT did not differ among controls and horses given 8 mg Cr/d. Following glucose infusion, serum insulin concentrations were greater (P < 0.05) in horses fed 2 or 4 mg Cr and tended to be greater in those fed 8 mg Cr/d compared with controls. The results of this study indicate that 2 or 4 mg Cr/d from Cr Prop increased insulin sensitivity in adult horses following oral carbohydrate consumption. ---------------------------------------- Met Ions Life Sci. 2019 Jan 14;19. Chromium Supplementation in Human Health, Metabolic Syndrome, and Diabetes. Maret W. Abstract After 40 years of significant work, it was generally accepted that chromium in its trivalent valence state, Cr(III), is an essential micronutrient for humans. This view began to be challenged around the turn of the millennium. Some investigators argue that its effects on glucose and lipid metabolism reflect a pharmacological rather than a nutritional mode of action while yet others express concern about the toxicity and safety of supplemental chromium. Understanding the conjectures requires a reflection on the different definitions of "essential" and a perspective on the development of the field, which in itself is a remarkable snippet of science history and education. At the center of the discussion is our failure to have established a molecular structure and a specific site of action of a biological chromium complex. Instead, many different types of Cr(III) complexes, in particular chromium picolinate, but also those with nicotinate, propionate, histidinate, chloride, and other ligands, all with different chemical properties and biological activities, are being used in laboratory investigations and supplementation. Without knowledge of the metabolic transformations and the specific chemical properties that biological ligands impart on chromium, many of these investigations, in particular those ex vivo, have limited value for understanding chromium's biological function. Whether a chromium deficiency exists in humans and who is affected is poorly defined. There is evidence for the efficacy of chromium supplements in improving conditions in metabolic syndrome and in some diabetes Type 2 patients, but there are no effects on body composition in healthy individuals. Chromium is present in human tissues and in our food and Cr(III) compounds are given in (total) parenteral nutrition, taken as a supplement by athletes and bodybuilders, are ingredients of vitamin pills consumed by the general population, and are employed in animal nutrition. Another contentious issue is whether Cr(III) complexes are safe, as chromium in its hexavalent state, Cr(VI) (chromate), is genotoxic and a group I carcinogen for humans with sufficient evidence for inhalation and lung cancer. For the benefit of human health, there is a continuing need for a balanced view and informed and robust experiments to determine the specific biological molecules that are involved in the metabolism of Cr(III), the activity of biological Cr(III) complexes at specific sites of action, and the amount of supplemental Cr(III) that potentially causes long-term toxicity.

Viewing 0 reply threads
  • You must be logged in to reply to this topic.